metal-organic compounds

V = 3159.5 (8) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.58 \times 0.40 \times 0.38 \text{ mm}$ 

14074 measured reflections 5549 independent reflections 4532 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.39 \text{ mm}^{-1}$ 

T = 298 (2) K

 $R_{\rm int} = 0.048$ 

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## Diaguabis[4-methyl-2-(4-methylphenylsulfonamido)pentanoato- $\kappa$ O]calcium(II)

Xi-Shi Tai,<sup>a</sup>\* Jie Yin<sup>b</sup> and Ming-Yang Hao<sup>c</sup>

<sup>a</sup>Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, <sup>b</sup>Department of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China, and <sup>c</sup>Clinical College of Weifang Medical University, Weifang 261042, People's Republic of China

Correspondence e-mail: taixishi@lzu.edu.cn

Received 7 May 2007; accepted 14 June 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.051; wR factor = 0.112; data-to-parameter ratio = 15.0.

In the title compound,  $[Ca(C_{13}H_{18}NO_4S)_2(H_2O)_2]$ , a distorted CaO<sub>4</sub> tetrahedron arises from the coordination of the two ligands and two water molecules. A network of hydrogen bonds helps to establish the crystal packing.

#### **Related literature**

For related literature, see: Tai et al. (2005).



### **Experimental**

#### Crystal data

[Ca(C13H18NO4S)2(H2O)2]  $M_r = 644.80$ Orthorhombic,  $P2_12_12_1$ a = 5.1575 (11) Åb = 17.430(2)Å c = 35.147 (4) Å

#### Data collection

| Bruker SMART CCD area-detector         |
|----------------------------------------|
| diffractometer                         |
| Absorption correction: multi-scan      |
| (SADABS; Bruker, 1997)                 |
| $T_{\min} = 0.808, \ T_{\max} = 0.868$ |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.051$ | H-atom parameters constrained                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.112$               | $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$  |
| S = 1.02                        | $\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ \AA}^{-3}$ |
| 5549 reflections                | Absolute structure: Flack (1983)                           |
| 370 parameters                  | with 2309 Friedel pairs                                    |
| 90 restraints                   | Flack parameter: 0.04 (5)                                  |
|                                 |                                                            |

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (No. 20671073), NingXia Natural Gas Transferring Key Laboratory (No. 2004007), the Science and Technology Foundation of Weifang, and Weifang University for research grants.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2062).

#### References

Bruker (1997). SADABS (Version 2.01), SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Tai, X.-S., Liu, W.-Y., Liu, Y.-Z. & Li, Y.-Z. (2005). Acta Cryst. E61, 0389-0390.

Acta Cryst. (2007). E63, m1935 [doi:10.1107/81600536807029327]

## Diaquabis[4-methyl-2-(4-methylphenylsulfonamido)pentanoato-KO]calcium(II)

## X.-S. Tai, J. Yin and M.-Y. Hao

### Comment

As part of our ongoing studies of metal coordination complexes with multidentate ligands (Tai *et al.*, 2005), the synthesis and structure of the title compound, (I), is reported.

Two O-monodentate ligands and two water molecules are attached to the calcium atom, resulting in a distorted CaO<sub>4</sub> tetrahedron (Fig. 1). The identical S2=O8 [1.437 (3) Å], S2=O7 [1.430 (3) Å], C14=O6 [1.243 (5) Å] and S1=O3 [1.427 (3) Å], S1=O4 [1.423 (3) Å], C1=O2 [1.254 (5) Å] bonds lengths imply double bond character. The dihedral angle between the two benzene ring mean planes (C7—C12 and C20—C25) is 129.9 (3) °.

Two molecules of water complete the structure of (I) and a network of hydrogen bonds helps to establish the crystal packing.

#### Experimental

1 mmol of calcium perchlorate was added to a solution of 4-toluenesulfonyl chloride-*L*-leucine (2 mmol) in 10 ml of CH<sub>3</sub>OH/ H<sub>2</sub>O (v/v 1:1). The mixture was continuously stirred for 4 h at refluxing temperature, evaporating some methanol, then, upon cooling, the solid product was collected by filtration and dried *in vacuo* (yield 69%). Clear blocks of (I) were obtained by evaporation from a methanol solution after a week.

### Refinement

The water H atoms were located in a difference map and refined as riding in their as-found relative positions with  $U_{iso}(H) = 1.2U_{eq}(O)$ . Other H atoms were placed geometrically (C—H = 0.93–0.97 Å, O—H = 0.82 Å, N—H = 0.86 Å) and refined as riding with  $U_{iso}(H) = 1.2U_{eq}(C,N)$  or  $1.5U_{eq}(O)$ .

## Figures



Fig. 1. The complex molecule in (I) with 50% probability ellipsoids (arbitrary spheres for the H atoms).

### Diaquabis[4-methyl-2-(4-methylphenylsulfonamido)pentanoato-κO]calcium(II)

## Crystal data [Ca(C<sub>13</sub>H<sub>18</sub>NO<sub>4</sub>S)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]

 $D_{\rm x} = 1.356 {\rm Mg m}^{-3}$ 

| $M_r = 644.80$               |
|------------------------------|
| Orthorhombic, $P2_12_12_1$   |
| <i>a</i> = 5.1575 (11) Å     |
| b = 17.430 (2) Å             |
| c = 35.147 (4)  Å            |
| $V = 3159.5 (8) \text{ Å}^3$ |
| Z = 4                        |
| $F_{000} = 1368$             |
|                              |

## Data collection

| Bruker CCD area-detector<br>diffractometer                  | 5549 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 4532 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.048$                  |
| T = 298(2)  K                                               | $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\varphi$ and $\omega$ scans                                | $\theta_{\min} = 1.3^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 1997) | $h = -6 \rightarrow 6$                 |
| $T_{\min} = 0.808, \ T_{\max} = 0.868$                      | $k = -20 \rightarrow 14$               |
| 14074 measured reflections                                  | $l = -39 \rightarrow 41$               |
|                                                             |                                        |

Mo Kα radiation

Cell parameters from 4003 reflections

 $\lambda = 0.71073 \text{ Å}$ 

 $\theta = 2.3-23.3^{\circ}$   $\mu = 0.39 \text{ mm}^{-1}$  T = 298 (2) KColourless, block  $0.58 \times 0.40 \times 0.38 \text{ mm}$ 

## Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from neighbouring sites                            |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | H-atom parameters constrained                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.051$                                | $w = 1/[\sigma^2(F_o^2) + (0.0424P)^2 + 1.9751P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.112$                                              | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| <i>S</i> = 1.02                                                | $\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$                               |
| 5549 reflections                                               | $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$                          |
| 370 parameters                                                 | Extinction correction: none                                                         |
| 90 restraints                                                  | Absolute structure: Flack (1983)                                                    |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.04 (5)                                                           |
| Secondary atom site location: difference Fourier map           |                                                                                     |

Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|--------------|---------------------------|
| Cal  | 0.85026 (15) | 0.64157 (4)  | 0.06135 (2)  | 0.02487 (19)              |
| N1   | 1.6802 (6)   | 0.46340 (18) | 0.13168 (10) | 0.0321 (8)                |
| H1   | 1.7678       | 0.4925       | 0.1149       | 0.039*                    |
| N2   | 0.0086 (6)   | 0.84341 (17) | 0.11043 (9)  | 0.0298 (8)                |
| H2   | -0.0864      | 0.8062       | 0.0994       | 0.036*                    |
| 01   | 1.0994 (5)   | 0.56081 (16) | 0.09914 (8)  | 0.0379 (8)                |
| 02   | 1.5023 (6)   | 0.56391 (15) | 0.07629 (8)  | 0.0369 (7)                |
| O3   | 1.9911 (6)   | 0.36387 (18) | 0.11820 (10) | 0.0559 (9)                |
| O4   | 1.5574 (6)   | 0.32834 (17) | 0.14181 (10) | 0.0549 (10)               |
| O5   | 0.5959 (5)   | 0.73580 (15) | 0.09304 (8)  | 0.0341 (7)                |
| O6   | 0.2036 (5)   | 0.72545 (15) | 0.06731 (8)  | 0.0369 (7)                |
| 07   | 0.1982 (6)   | 0.91204 (16) | 0.05345 (7)  | 0.0386 (7)                |
| 08   | -0.2625 (5)  | 0.92264 (17) | 0.06999 (8)  | 0.0451 (8)                |
| 09   | 0.6424 (8)   | 0.69671 (18) | 0.00867 (8)  | 0.0613 (10)               |
| H9A  | 0.4981       | 0.7103       | 0.0182       | 0.074*                    |
| H9B  | 0.6140       | 0.6662       | -0.0097      | 0.074*                    |
| O10  | 1.0908 (6)   | 0.57833 (18) | 0.01260 (9)  | 0.0545 (9)                |
| H10A | 1.0654       | 0.5833       | -0.0112      | 0.065*                    |
| H10B | 1.2449       | 0.5779       | 0.0211       | 0.065*                    |
| S1   | 1.7171 (2)   | 0.37528 (6)  | 0.11838 (4)  | 0.0408 (3)                |
| S2   | 0.0025 (2)   | 0.91630 (6)  | 0.08220 (3)  | 0.0324 (3)                |
| C1   | 1.3381 (8)   | 0.5440 (2)   | 0.10069 (11) | 0.0292 (9)                |
| C2   | 1.4202 (8)   | 0.4970 (2)   | 0.13530 (11) | 0.0312 (10)               |
| H2A  | 1.2950       | 0.4553       | 0.1389       | 0.037*                    |
| C3   | 1.4144 (10)  | 0.5481 (3)   | 0.17045 (13) | 0.0488 (13)               |
| H3A  | 1.5502       | 0.5863       | 0.1681       | 0.059*                    |
| H3B  | 1.2499       | 0.5751       | 0.1710       | 0.059*                    |
| C4   | 1.4492 (10)  | 0.5064 (3)   | 0.20805 (13) | 0.0532 (13)               |
| H4   | 1.6039       | 0.4740       | 0.2058       | 0.064*                    |
| C5   | 1.2227 (13)  | 0.4545 (5)   | 0.21638 (18) | 0.106 (2)                 |
| H5A  | 1.0701       | 0.4849       | 0.2205       | 0.159*                    |
| H5B  | 1.2586       | 0.4248       | 0.2388       | 0.159*                    |
| H5C  | 1.1949       | 0.4207       | 0.1952       | 0.159*                    |
| C6   | 1.4963 (17)  | 0.5625 (4)   | 0.24014 (17) | 0.100 (2)                 |
| H6A  | 1.3482       | 0.5954       | 0.2429       | 0.150*                    |
| H6B  | 1.6467       | 0.5929       | 0.2345       | 0.150*                    |
| H6C  | 1.5237       | 0.5348       | 0.2634       | 0.150*                    |
| C7   | 1.6044 (9)   | 0.3669 (2)   | 0.07123 (13) | 0.0397 (11)               |
| C8   | 1.3987 (9)   | 0.3197 (2)   | 0.06278 (15) | 0.0471 (12)               |
| H8   | 1.3225       | 0.2899       | 0.0817       | 0.057*                    |
| C9   | 1.3070 (11)  | 0.3169 (3)   | 0.02595 (15) | 0.0544 (14)               |
| Н9   | 1.1670       | 0.2852       | 0.0205       | 0.065*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

| C10  | 1.4153 (9)   | 0.3596 (3) | -0.00300 (14) | 0.0487 (12) |
|------|--------------|------------|---------------|-------------|
| C11  | 1.6259 (11)  | 0.4066 (3) | 0.00626 (15)  | 0.0527 (13) |
| H11  | 1.7040       | 0.4360     | -0.0126       | 0.063*      |
| C12  | 1.7187 (9)   | 0.4097 (2) | 0.04283 (14)  | 0.0459 (12) |
| H12  | 1.8597       | 0.4409     | 0.0485        | 0.055*      |
| C13  | 1.3128 (12)  | 0.3565 (3) | -0.04291 (15) | 0.0747 (17) |
| H13A | 1.1532       | 0.3282     | -0.0433       | 0.112*      |
| H13B | 1.4372       | 0.3316     | -0.0591       | 0.112*      |
| H13C | 1.2823       | 0.4077     | -0.0519       | 0.112*      |
| C14  | 0.3589 (8)   | 0.7525 (2) | 0.09079 (11)  | 0.0287 (9)  |
| C15  | 0.2574 (8)   | 0.8097 (2) | 0.12076 (11)  | 0.0311 (10) |
| H15  | 0.3851       | 0.8507     | 0.1241        | 0.037*      |
| C16  | 0.2253 (10)  | 0.7668 (3) | 0.15842 (13)  | 0.0485 (12) |
| H16A | 0.0999       | 0.7259     | 0.1547        | 0.058*      |
| H16B | 0.3896       | 0.7430     | 0.1648        | 0.058*      |
| C17  | 0.1382 (12)  | 0.8154 (3) | 0.19202 (13)  | 0.0525 (12) |
| H17  | -0.0259      | 0.8400     | 0.1850        | 0.063*      |
| C18  | 0.3295 (13)  | 0.8783 (4) | 0.20161 (17)  | 0.090 (2)   |
| H18A | 0.3598       | 0.9093     | 0.1795        | 0.135*      |
| H18B | 0.4898       | 0.8558     | 0.2098        | 0.135*      |
| H18C | 0.2601       | 0.9097     | 0.2216        | 0.135*      |
| C19  | 0.0868 (19)  | 0.7650 (4) | 0.22628 (16)  | 0.110 (3)   |
| H19A | 0.2438       | 0.7392     | 0.2335        | 0.166*      |
| H19B | -0.0435      | 0.7277     | 0.2200        | 0.166*      |
| H19C | 0.0275       | 0.7961     | 0.2471        | 0.166*      |
| C20  | 0.0724 (8)   | 0.9945 (2) | 0.11172 (12)  | 0.0324 (10) |
| C21  | 0.2778 (9)   | 1.0421 (2) | 0.10399 (13)  | 0.0413 (11) |
| H21  | 0.3907       | 1.0310     | 0.0841        | 0.050*      |
| C22  | 0.3151 (11)  | 1.1071 (2) | 0.12623 (13)  | 0.0494 (13) |
| H22  | 0.4537       | 1.1395     | 0.1210        | 0.059*      |
| C23  | 0.1494 (11)  | 1.1245 (2) | 0.15617 (13)  | 0.0506 (13) |
| C24  | -0.0499 (11) | 1.0745 (3) | 0.16340 (14)  | 0.0567 (15) |
| H24  | -0.1618      | 1.0846     | 0.1835        | 0.068*      |
| C25  | -0.0886 (10) | 1.0103 (3) | 0.14186 (13)  | 0.0492 (13) |
| H25  | -0.2244      | 0.9772     | 0.1476        | 0.059*      |
| C26  | 0.1876 (14)  | 1.1967 (3) | 0.17961 (16)  | 0.081 (2)   |
| H26A | 0.1332       | 1.2405     | 0.1651        | 0.121*      |
| H26B | 0.3675       | 1.2019     | 0.1861        | 0.121*      |
| H26C | 0.0862       | 1.1933     | 0.2025        | 0.121*      |
|      |              |            |               |             |

## Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cal | 0.0183 (4)  | 0.0281 (4)  | 0.0282 (4)  | -0.0003 (4)  | -0.0001 (4)  | 0.0012 (3)   |
| N1  | 0.0190 (19) | 0.0360 (18) | 0.041 (2)   | 0.0032 (16)  | -0.0011 (17) | 0.0109 (15)  |
| N2  | 0.0227 (18) | 0.0241 (17) | 0.043 (2)   | 0.0018 (15)  | -0.0004 (18) | -0.0088 (14) |
| 01  | 0.0176 (16) | 0.0478 (18) | 0.0483 (19) | 0.0029 (14)  | -0.0024 (13) | 0.0210 (14)  |
| O2  | 0.0287 (16) | 0.0385 (17) | 0.0434 (17) | -0.0011 (14) | 0.0052 (15)  | 0.0130 (13)  |

| O3  | 0.0298 (17) | 0.0490 (19) | 0.089 (3)   | 0.0144 (17)  | -0.0061 (19) | 0.0041 (19)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| O4  | 0.049 (2)   | 0.0426 (18) | 0.073 (2)   | -0.0043 (16) | -0.0045 (19) | 0.0275 (17)  |
| O5  | 0.0152 (16) | 0.0380 (16) | 0.0493 (18) | 0.0023 (13)  | -0.0013 (13) | -0.0079 (13) |
| O6  | 0.0211 (16) | 0.0387 (16) | 0.0509 (19) | 0.0002 (13)  | -0.0084 (14) | -0.0155 (14) |
| O7  | 0.0358 (18) | 0.0503 (17) | 0.0296 (15) | -0.0021 (15) | 0.0089 (14)  | -0.0053 (13) |
| O8  | 0.0283 (17) | 0.0517 (18) | 0.055 (2)   | 0.0098 (15)  | -0.0129 (15) | -0.0051 (16) |
| O9  | 0.076 (3)   | 0.075 (2)   | 0.0337 (18) | 0.022 (2)    | -0.0120 (19) | 0.0049 (16)  |
| O10 | 0.044 (2)   | 0.077 (2)   | 0.0420 (18) | 0.0081 (19)  | 0.0030 (16)  | -0.0154 (17) |
| S1  | 0.0280 (6)  | 0.0339 (6)  | 0.0606 (8)  | 0.0043 (5)   | -0.0029 (6)  | 0.0105 (5)   |
| S2  | 0.0246 (5)  | 0.0365 (6)  | 0.0362 (6)  | 0.0038 (5)   | -0.0019 (5)  | -0.0051 (5)  |
| C1  | 0.023 (2)   | 0.027 (2)   | 0.037 (2)   | -0.003 (2)   | -0.003 (2)   | 0.0047 (17)  |
| C2  | 0.022 (2)   | 0.037 (2)   | 0.035 (2)   | 0.0023 (19)  | 0.0007 (19)  | 0.0125 (19)  |
| C3  | 0.045 (3)   | 0.054 (3)   | 0.048 (3)   | 0.017 (2)    | -0.002 (2)   | 0.006 (2)    |
| C4  | 0.045 (3)   | 0.073 (3)   | 0.041 (3)   | 0.013 (3)    | -0.004 (2)   | 0.008 (2)    |
| C5  | 0.077 (5)   | 0.171 (6)   | 0.070 (4)   | -0.023 (5)   | -0.002 (4)   | 0.050 (4)    |
| C6  | 0.130 (6)   | 0.111 (5)   | 0.059 (4)   | 0.029 (5)    | -0.010 (4)   | -0.013 (4)   |
| C7  | 0.033 (2)   | 0.030 (2)   | 0.056 (3)   | 0.004 (2)    | 0.005 (2)    | 0.003 (2)    |
| C8  | 0.044 (3)   | 0.040 (3)   | 0.058 (3)   | 0.001 (2)    | 0.010 (3)    | 0.002 (2)    |
| C9  | 0.047 (4)   | 0.044 (3)   | 0.073 (4)   | -0.008 (3)   | 0.000 (3)    | -0.007 (3)   |
| C10 | 0.045 (3)   | 0.044 (3)   | 0.058 (3)   | 0.003 (3)    | -0.007 (3)   | -0.002 (3)   |
| C11 | 0.052 (3)   | 0.045 (3)   | 0.061 (3)   | -0.003 (3)   | 0.008 (3)    | 0.009 (2)    |
| C12 | 0.037 (3)   | 0.036 (2)   | 0.065 (3)   | -0.007 (2)   | -0.002 (3)   | 0.006 (2)    |
| C13 | 0.079 (5)   | 0.075 (4)   | 0.069 (4)   | -0.007 (4)   | -0.010 (3)   | -0.004 (3)   |
| C14 | 0.021 (2)   | 0.026 (2)   | 0.039 (2)   | -0.0007 (19) | 0.002 (2)    | 0.0000 (18)  |
| C15 | 0.030 (2)   | 0.029 (2)   | 0.034 (2)   | 0.0027 (18)  | -0.002 (2)   | -0.0069 (18) |
| C16 | 0.051 (3)   | 0.047 (3)   | 0.047 (3)   | 0.012 (2)    | 0.006 (2)    | 0.004 (2)    |
| C17 | 0.058 (3)   | 0.058 (3)   | 0.041 (3)   | 0.010 (3)    | 0.011 (3)    | 0.002 (2)    |
| C18 | 0.096 (5)   | 0.104 (4)   | 0.070 (4)   | 0.007 (4)    | -0.001 (4)   | -0.037 (3)   |
| C19 | 0.170 (7)   | 0.101 (5)   | 0.060 (4)   | 0.024 (5)    | 0.042 (4)    | 0.023 (3)    |
| C20 | 0.026 (2)   | 0.032 (2)   | 0.039 (2)   | 0.0051 (19)  | -0.002 (2)   | 0.0017 (19)  |
| C21 | 0.039 (3)   | 0.040 (2)   | 0.044 (3)   | -0.004 (2)   | 0.007 (2)    | -0.001 (2)   |
| C22 | 0.057 (3)   | 0.041 (3)   | 0.050 (3)   | -0.015 (3)   | -0.001 (3)   | 0.001 (2)    |
| C23 | 0.066 (4)   | 0.034 (2)   | 0.052 (3)   | -0.008 (3)   | 0.005 (3)    | -0.002 (2)   |
| C24 | 0.069 (4)   | 0.052 (3)   | 0.049 (3)   | -0.010 (3)   | 0.022 (3)    | -0.013 (3)   |
| C25 | 0.051 (3)   | 0.043 (3)   | 0.054 (3)   | -0.010 (2)   | 0.023 (3)    | -0.005 (2)   |
| C26 | 0.125 (6)   | 0.045 (3)   | 0.072 (4)   | -0.007 (4)   | 0.012 (4)    | -0.016 (3)   |
|     |             |             |             |              |              |              |

## Geometric parameters (Å, °)

| Ca1—O2 <sup>i</sup>  | 2.308 (3) | С6—Н6С  | 0.9600    |
|----------------------|-----------|---------|-----------|
| Ca1—O1               | 2.323 (3) | С7—С8   | 1.375 (6) |
| Ca1—O9               | 2.345 (3) | C7—C12  | 1.378 (6) |
| Ca1—O6 <sup>ii</sup> | 2.346 (3) | C8—C9   | 1.379 (7) |
| Ca1—O5               | 2.379 (3) | С8—Н8   | 0.9300    |
| Ca1—O10              | 2.385 (3) | C9—C10  | 1.378 (7) |
| Ca1—H9A              | 2.6516    | С9—Н9   | 0.9300    |
| Ca1—H10B             | 2.7147    | C10—C11 | 1.399 (7) |
| N1—C2                | 1.469 (5) | C10—C13 | 1.500 (7) |
| N1—S1                | 1.617 (3) | C11—C12 | 1.372 (7) |

| N1 II1                                | 0.0000      | C11 U11                  | 0.0200    |
|---------------------------------------|-------------|--------------------------|-----------|
| N2 C15                                | 0.9000      |                          | 0.9300    |
| N2_C15                                | 1.438(3)    | C12—III2                 | 0.9500    |
| N2                                    | 1.012 (3)   | С13—ПІЗА                 | 0.9600    |
| N2—H2                                 | 0.9000      | С13—П13В                 | 0.9600    |
|                                       | 1.207 (5)   | C13—H13C                 | 0.9000    |
|                                       | 1.234 (3)   |                          | 1.542 (5) |
| O2—Ca1 <sup>n</sup>                   | 2.308 (3)   | C15-C16                  | 1.529 (6) |
| O3—S1                                 | 1.427 (3)   | C15—H15                  | 0.9800    |
| O4—S1                                 | 1.423 (3)   | C16—C17                  | 1.521 (6) |
| O5—C14                                | 1.259 (5)   | C16—H16A                 | 0.9700    |
| O6—C14                                | 1.243 (5)   | С16—Н16В                 | 0.9700    |
| O6—Ca1 <sup>i</sup>                   | 2.346 (3)   | C17—C18                  | 1.513 (8) |
| O7—S2                                 | 1.430 (3)   | C17—C19                  | 1.514 (7) |
| O8—S2                                 | 1.437 (3)   | С17—Н17                  | 0.9800    |
| О9—Н9А                                | 0.8500      | C18—H18A                 | 0.9600    |
| О9—Н9В                                | 0.8499      | C18—H18B                 | 0.9600    |
| O10—H10A                              | 0.8498      | C18—H18C                 | 0.9600    |
| O10—H10B                              | 0.8498      | С19—Н19А                 | 0.9600    |
| S1—C7                                 | 1.762 (5)   | С19—Н19В                 | 0.9600    |
| S2—C20                                | 1.750 (4)   | С19—Н19С                 | 0.9600    |
| C1—C2                                 | 1.526 (5)   | C20—C21                  | 1.373 (6) |
| C2—C3                                 | 1.523 (6)   | C20—C25                  | 1.374 (6) |
| C2—H2A                                | 0.9800      | C21—C22                  | 1.389 (6) |
| C3—C4                                 | 1.519 (6)   | C21—H21                  | 0.9300    |
| С3—НЗА                                | 0.9700      | C22—C23                  | 1.389 (7) |
| С3—Н3В                                | 0.9700      | C22—H22                  | 0.9300    |
| C4—C5                                 | 1.506 (8)   | C23—C24                  | 1.371 (7) |
| C4—C6                                 | 1.512 (8)   | C23—C26                  | 1.516 (6) |
| C4—H4                                 | 0.9800      | C24—C25                  | 1.366 (6) |
| C5—H5A                                | 0.9600      | C24—H24                  | 0.9300    |
| С5—Н5В                                | 0.9600      | C25—H25                  | 0.9300    |
| C5—H5C                                | 0.9600      | C26—H26A                 | 0.9600    |
| С6—Н6А                                | 0.9600      | C26—H26B                 | 0.9600    |
| С6—Н6В                                | 0.9600      | C26—H26C                 | 0.9600    |
| O2 <sup>i</sup> —Ca1—O1               | 86.82 (10)  | Н6А—С6—Н6В               | 109.5     |
| $O2^{i}$ —Ca1—O9                      | 93.70 (12)  | С4—С6—Н6С                | 109.5     |
| 01—Ca1—O9                             | 162.26 (12) | Н6А—С6—Н6С               | 109.5     |
| O2 <sup>i</sup> —Ca1—O6 <sup>ii</sup> | 161.64 (11) | Н6В—С6—Н6С               | 109.5     |
| O1—Ca1—O6 <sup>ii</sup>               | 84.08 (10)  | C8—C7—C12                | 119.8 (4) |
| 09—Ca1—O6 <sup>ii</sup>               | 99.80 (12)  | C8—C7—S1                 | 120.5 (4) |
| O2 <sup>i</sup> —Ca1—O5               | 82.51 (10)  | C12—C7—S1                | 119.7 (4) |
| O1—Ca1—O5                             | 117.11 (11) | C7—C8—C9                 | 119.2 (5) |
| O9—Ca1—O5                             | 80.48 (11)  | С7—С8—Н8                 | 120.4     |
| O6 <sup>ii</sup> —Ca1—O5              | 87.49 (9)   | С9—С8—Н8                 | 120.4     |
| $O^{2^{i}}$ $C_{21}$ $O^{10}$         | 107 26 (11) | C10—C9—C8                | 122.4 (5) |
| $01 - C_{21} - 010$                   | 80.97 (11)  | $C_{10}$ $C_{9}$ $H_{9}$ | 118.8     |
| $00 C_{21} 010$                       | 81 05 (12)  |                          | 110.0     |
| 07-Ca1-010                            | 01.95 (12)  | 0-07-117                 | 110.0     |

| O6 <sup>ii</sup> —Ca1—O10  | 87.03 (11)  | C9—C10—C11    | 117.3 (5) |
|----------------------------|-------------|---------------|-----------|
| O5—Ca1—O10                 | 160.42 (11) | C9—C10—C13    | 121.9 (5) |
| O2 <sup>i</sup> —Ca1—H9A   | 82.1        | C11—C10—C13   | 120.8 (5) |
| O1—Ca1—H9A                 | 168.4       | C12—C11—C10   | 120.8 (5) |
| О9—Са1—Н9А                 | 18.3        | C12—C11—H11   | 119.6     |
| O6 <sup>ii</sup> —Ca1—H9A  | 107.6       | C10—C11—H11   | 119.6     |
| O5—Ca1—H9A                 | 65.0        | C11—C12—C7    | 120.5 (4) |
| O10—Ca1—H9A                | 98.9        | C11—C12—H12   | 119.7     |
| O2 <sup>i</sup> —Ca1—H10B  | 117.5       | С7—С12—Н12    | 119.7     |
| O1—Ca1—H10B                | 68.6        | С10—С13—Н13А  | 109.5     |
| O9—Ca1—H10B                | 95.7        | С10—С13—Н13В  | 109.5     |
| O6 <sup>ii</sup> —Ca1—H10B | 73.7        | H13A—C13—H13B | 109.5     |
| O5-Ca1-H10B                | 159.9       | C10—C13—H13C  | 109.5     |
| 010—Ca1—H10B               | 17.7        | H13A—C13—H13C | 109.5     |
| H9A—Ca1—H10B               | 113.6       | H13B—C13—H13C | 109.5     |
| C2—N1—S1                   | 120.7 (3)   | O6—C14—O5     | 125.4 (4) |
| C2—N1—H1                   | 106.9       | O6—C14—C15    | 118.7 (4) |
| S1—N1—H1                   | 106.7       | O5-C14-C15    | 115.8 (4) |
| C15—N2—S2                  | 119.2 (3)   | N2—C15—C16    | 108.5 (3) |
| C15—N2—H2                  | 107.2       | N2—C15—C14    | 112.9 (3) |
| S2—N2—H2                   | 107.1       | C16—C15—C14   | 108.2 (3) |
| C1—O1—Ca1                  | 134.6 (3)   | N2—C15—H15    | 109.1     |
| C1—O2—Ca1 <sup>ii</sup>    | 147.5 (3)   | C16—C15—H15   | 109.1     |
| C14—O5—Ca1                 | 131.7 (3)   | C14—C15—H15   | 109.1     |
| C14—O6—Ca1 <sup>i</sup>    | 142.8 (3)   | C17—C16—C15   | 115.6 (4) |
| Са1—О9—Н9А                 | 101.7       | C17—C16—H16A  | 108.4     |
| Ca1—O9—H9B                 | 115.1       | C15—C16—H16A  | 108.4     |
| Н9А—О9—Н9В                 | 108.9       | C17—C16—H16B  | 108.4     |
| Ca1—O10—H10A               | 125.3       | C15—C16—H16B  | 108.4     |
| Ca1—O10—H10B               | 103.7       | H16A—C16—H16B | 107.5     |
| H10A—O10—H10B              | 119.5       | C18—C17—C19   | 110.9 (5) |
| O4—S1—O3                   | 119.7 (2)   | C18—C17—C16   | 112.6 (4) |
| O4—S1—N1                   | 108.1 (2)   | C19—C17—C16   | 110.2 (4) |
| O3—S1—N1                   | 104.49 (19) | С18—С17—Н17   | 107.6     |
| O4—S1—C7                   | 107.8 (2)   | С19—С17—Н17   | 107.6     |
| O3—S1—C7                   | 108.1 (2)   | С16—С17—Н17   | 107.6     |
| N1—S1—C7                   | 108.15 (18) | C17—C18—H18A  | 109.5     |
| O7—S2—O8                   | 117.66 (18) | C17—C18—H18B  | 109.5     |
| O7—S2—N2                   | 112.35 (18) | H18A—C18—H18B | 109.5     |
| O8—S2—N2                   | 105.22 (19) | C17—C18—H18C  | 109.5     |
| O7—S2—C20                  | 108.30 (19) | H18A—C18—H18C | 109.5     |
| O8—S2—C20                  | 108.24 (19) | H18B—C18—H18C | 109.5     |
| N2—S2—C20                  | 104.17 (18) | С17—С19—Н19А  | 109.5     |
| O2—C1—O1                   | 124.2 (4)   | C17—C19—H19B  | 109.5     |
| O2—C1—C2                   | 120.4 (4)   | H19A—C19—H19B | 109.5     |
| O1—C1—C2                   | 115.3 (4)   | С17—С19—Н19С  | 109.5     |
| N1—C2—C3                   | 108.7 (3)   | H19A—C19—H19C | 109.5     |

| N1—C2—C1                     | 113.5 (3)   | H19B—C19—H19C                     | 109.5      |
|------------------------------|-------------|-----------------------------------|------------|
| C3—C2—C1                     | 109.1 (3)   | C21—C20—C25                       | 119.8 (4)  |
| N1—C2—H2A                    | 108.5       | C21—C20—S2                        | 120.8 (3)  |
| C3—C2—H2A                    | 108.5       | C25—C20—S2                        | 119.3 (3)  |
| C1—C2—H2A                    | 108.5       | C20—C21—C22                       | 119.2 (4)  |
| C4—C3—C2                     | 115.0 (4)   | C20-C21-H21                       | 120.4      |
| С4—С3—Н3А                    | 108.5       | C22-C21-H21                       | 120.4      |
| С2—С3—НЗА                    | 108.5       | C21—C22—C23                       | 121.3 (5)  |
| С4—С3—Н3В                    | 108.5       | C21—C22—H22                       | 119.3      |
| С2—С3—Н3В                    | 108.5       | С23—С22—Н22                       | 119.3      |
| НЗА—СЗ—НЗВ                   | 107.5       | C24—C23—C22                       | 117.5 (4)  |
| C5—C4—C6                     | 111.6 (5)   | C24—C23—C26                       | 121.6 (5)  |
| C5—C4—C3                     | 111.4 (4)   | C22—C23—C26                       | 120.9 (5)  |
| C6—C4—C3                     | 111.0 (5)   | C25—C24—C23                       | 121.8 (5)  |
| C5—C4—H4                     | 107.6       | C25—C24—H24                       | 119.1      |
| C6—C4—H4                     | 107.6       | C23—C24—H24                       | 119.1      |
| C3—C4—H4                     | 107.6       | C24—C25—C20                       | 120.2 (4)  |
| C4—C5—H5A                    | 109.5       | С24—С25—Н25                       | 119.9      |
| C4—C5—H5B                    | 109.5       | С20—С25—Н25                       | 119.9      |
| H5A—C5—H5B                   | 109.5       | С23—С26—Н26А                      | 109.5      |
| C4—C5—H5C                    | 109.5       | С23—С26—Н26В                      | 109.5      |
| Н5А—С5—Н5С                   | 109.5       | H26A—C26—H26B                     | 109.5      |
| H5B—C5—H5C                   | 109.5       | C23—C26—H26C                      | 109.5      |
| C4—C6—H6A                    | 109.5       | $H_{26A} - C_{26} - H_{26C}$      | 109.5      |
| C4—C6—H6B                    | 109.5       | H26B-C26-H26C                     | 109.5      |
| $\Omega^{i}$ Cal Ol Cl       | 155.9 (4)   | C7 - C8 - C9 - C10                | 0.5 (7)    |
| 02 - Cal - 01 - Cl           | $(-1)^{-1}$ | $C^{8}$ $C^{0}$ $C^{10}$ $C^{11}$ | 0.3(7)     |
|                              | -40.1(4)    | $C_{8} = C_{9} = C_{10} = C_{11}$ | 0.2(7)     |
| 06 - Cal - Ol - Cl           | -40.1(4)    |                                   | -179.0(3)  |
|                              | -124.2(4)   | C9—C10—C11—C12                    | -0.2 (7)   |
| 010-Cal-Ol-Cl                | 4/.9 (4)    |                                   | 1/9.6 (5)  |
| O2 <sup>1</sup> —Ca1—O5—C14  | -45.5 (4)   | C10—C11—C12—C7                    | -0.5 (7)   |
| O1—Ca1—O5—C14                | -128.1 (3)  | C8—C7—C12—C11                     | 1.2 (7)    |
| O9—Ca1—O5—C14                | 49.5 (4)    | S1—C7—C12—C11                     | -177.0 (4) |
| O6 <sup>ii</sup> —Ca1—O5—C14 | 149.9 (4)   | Ca1 <sup>i</sup> —O6—C14—O5       | 108.2 (5)  |
| O10—Ca1—O5—C14               | 76.0 (5)    | Ca1 <sup>i</sup> —O6—C14—C15      | -69.9 (5)  |
| C2—N1—S1—O4                  | -51.5 (4)   | Ca1—O5—C14—O6                     | -7.3 (6)   |
| C2—N1—S1—O3                  | 179.9 (3)   | Ca1                               | 170.9 (2)  |
| C2—N1—S1—C7                  | 64.9 (4)    | S2—N2—C15—C16                     | 156.8 (3)  |
| C15—N2—S2—O7                 | 36.1 (3)    | S2—N2—C15—C14                     | -83.2 (4)  |
| C15—N2—S2—O8                 | 165.3 (3)   | O6-C14-C15-N2                     | -18.4 (5)  |
| C15—N2—S2—C20                | -80.9 (3)   | O5-C14-C15-N2                     | 163.3 (3)  |
| Ca1 <sup>ii</sup> —O2—C1—O1  | 107.7 (5)   | O6—C14—C15—C16                    | 101.7 (4)  |
| Cal <sup>ii</sup> —O2—C1—C2  | -71.6 (6)   | O5-C14-C15-C16                    | -76.6 (5)  |
| Ca1—O1—C1—O2                 | -9.3 (7)    | N2-C15-C16-C17                    | -60.0 (5)  |
| Ca1—O1—C1—C2                 | 170.0 (3)   | C14—C15—C16—C17                   | 177.2 (4)  |
| S1—N1—C2—C3                  | 140.5 (3)   | C15-C16-C17-C18                   | -61.5 (6)  |
| S1—N1—C2—C1                  | -97.9 (4)   | C15—C16—C17—C19                   | 174.1 (5)  |

| O2-C1-C2-N1                                                      | -14.3 (5)  | O7—S2—C20—C21   | 3.6 (4)    |  |
|------------------------------------------------------------------|------------|-----------------|------------|--|
| O1—C1—C2—N1                                                      | 166.3 (3)  | O8—S2—C20—C21   | -125.0 (4) |  |
| O2—C1—C2—C3                                                      | 107.1 (4)  | N2-S2-C20-C21   | 123.4 (4)  |  |
| O1—C1—C2—C3                                                      | -72.3 (5)  | O7—S2—C20—C25   | -179.7 (3) |  |
| N1—C2—C3—C4                                                      | -65.2 (5)  | O8—S2—C20—C25   | 51.7 (4)   |  |
| C1—C2—C3—C4                                                      | 170.6 (4)  | N2—S2—C20—C25   | -59.9 (4)  |  |
| C2—C3—C4—C5                                                      | -66.8 (6)  | C25—C20—C21—C22 | -1.9 (7)   |  |
| C2—C3—C4—C6                                                      | 168.2 (5)  | S2—C20—C21—C22  | 174.9 (3)  |  |
| O4—S1—C7—C8                                                      | -1.2 (4)   | C20—C21—C22—C23 | 0.3 (7)    |  |
| O3—S1—C7—C8                                                      | 129.5 (4)  | C21—C22—C23—C24 | 1.1 (7)    |  |
| N1—S1—C7—C8                                                      | -117.9 (4) | C21—C22—C23—C26 | -178.4 (5) |  |
| O4—S1—C7—C12                                                     | 177.0 (3)  | C22—C23—C24—C25 | -0.9 (8)   |  |
| O3—S1—C7—C12                                                     | -52.3 (4)  | C26—C23—C24—C25 | 178.6 (5)  |  |
| N1—S1—C7—C12                                                     | 60.3 (4)   | C23—C24—C25—C20 | -0.7 (8)   |  |
| C12—C7—C8—C9                                                     | -1.2 (7)   | C21—C20—C25—C24 | 2.1 (7)    |  |
| S1—C7—C8—C9                                                      | 177.0 (4)  | S2-C20-C25-C24  | -174.7 (4) |  |
| Symmetry codes: (i) $x-1$ , $y$ , $z$ ; (ii) $x+1$ , $y$ , $z$ . |            |                 |            |  |

Fig. 1

